If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50-8c^2=0
a = -8; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-8)·50
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*-8}=\frac{-40}{-16} =2+1/2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*-8}=\frac{40}{-16} =-2+1/2 $
| -10+19w=-6+18w+3 | | 12=34c+(-3) | | 10n =2 | | 10+z=4z | | -5-18d=-17d-20 | | x(14+x)=95 | | 26=-19+x | | 980x=7372937 | | -3(1-2y)=-9 | | 9x-15=16x-8 | | 10x(1+4x+12=6(-7x-8)+6 | | 7n=-6.58+5.6n | | x+0.5x=1.2 | | 3/5l-2/5=46/15 | | 20+2m=3m | | 3x+1+4x+5=5(2x-3) | | 3.2+h-12.3=6 | | -16x+2=-30 | | -12+j=2j-9 | | 24-9x9=+6/3 | | -17h+14=-5h-14-16h | | 3x+1+4x+5=(2x-3) | | -7=1+(2/3)n | | (x-54)=4x | | -z=36 | | -11.5p-18.62+0.5p=-8.8p+19.66 | | 4+10x=8-6x | | 28+y=45 | | 9-p=72 | | u/20+10=14 | | 53-8z=5(z-5) | | 3x^2+24x=-27 |